Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762127

RESUMEN

Endolithic microorganisms, ranging from microeukaryotes to bacteria and archaea, live within the cracks and crevices of rocks. Deception Island in Antarctica constitutes an extreme environment in which endoliths face environmental threats such as intense cold, lack of light in winter, high solar radiation in summer, and heat emitted as the result of volcanic eruptions. In addition, the endolithic biome is considered the harshest one on Earth, since it suffers added threats such as dryness or lack of nutrients. Even so, samples from this hostile environment, collected at various points throughout the island, hosted diverse and numerous microorganisms such as bacteria, fungi, diatoms, ciliates, flagellates and unicellular algae. These endoliths were first identified by Scanning Electron Microscopy (SEM). To understand the molecular mechanisms of adaptation of these endoliths to their environment, genomics techniques were used, and prokaryotic and eukaryotic microorganisms were identified by metabarcoding, sequencing the V3-V4 and V4-V5 regions of the 16S and 18S rRNA genes, respectively. Subsequently, the sequences were analyzed by bioinformatic methods that allow their metabolism to be deduced from the taxonomy. The results obtained concluded that some of these microorganisms have activated the biosynthesis routes of pigments such as prodigiosin or flavonoids. These adaptation studies also revealed that microorganisms defend themselves against environmental toxins by activating metabolic pathways for the degradation of compounds such as ethylbenzene, xylene and dioxins and for the biosynthesis of antioxidant molecules such as glutathione. Finally, these Antarctic endolithic microorganisms are of great interest in astrobiology since endolithic settings are environmentally analogous to the primitive Earth or the surfaces of extraterrestrial bodies.


Asunto(s)
Antioxidantes , Archaea , Regiones Antárticas , Archaea/genética , Biología Computacional , Ecosistema
2.
Phys Chem Chem Phys ; 25(30): 20473-20484, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37431774

RESUMEN

Prebiotic chemistry one-pot reactions, such as HCN-derived polymerizations, have been used as stimulating starting points for the generation of new multifunctional materials due to the simplicity of the processes, use of water as solvent, and moderate thermal conditions. Slight experimental variations in this special kind of polymerization tune the final properties of the products. Thus, herein, the influence of NH4Cl on the polymerization kinetics of cyanide under hydrothermal conditions and on the macrostructures and properties of this complex system is explored. The kinetics of the process is consistent with an autocatalytic model, but important variations in the polymerization reaction are observed according to a simple empirical model based on a Hill equation. The differences in the kinetic behaviour against NH4Cl were also revealed when the structural, morphological, thermal, electronic and magnetic properties of the synthesized cyanide polymers were compared, and these properties were evaluated by elemental analysis, FTIR, XPS, UV-vis, and ESR spectroscopies, X-ray diffraction, SEM and thermoanalytical techniques. As a result, this hydrothermal prebiotic polymerization is not only pH dependent, as previously thought, but also ammonium subservient. From this result, a hypothetical reaction mechanism was proposed, which involves the active participation of ammonium cations via formamidine and serves as a remarkable point against previous reports. The results discussed here expand the knowledge on HCN wet chemistry, offer an extended view of the relevant parameters during the simulation of hydrothermal scenarios and describe the production of promising paramagnetic and semiconducting materials inspired by prebiotic chemistry.

3.
Polymers (Basel) ; 14(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080535

RESUMEN

The polymers based on diaminomaleonitrile (DAMN polymers) are a special group within an extensive set of complex substances, namely HCN polymers (DAMN is the formal tetramer of the HCN), which currently present a growing interest in materials science. Recently, the thermal polymerizability of DAMN has been reported, both in an aqueous medium and in bulk, offering the potential for the development of capacitors and biosensors, respectively. In the present work, the polymerization of this plausible prebiotic molecule has been hydrothermally explored using microwave radiation (MWR) via the heating of aqueous DAMN suspensions at 170-190 °C. In this way, polymeric submicron particles derived from DAMN were obtained for the first time. The structural, thermal decomposition, and electrochemical properties were also deeply evaluated. The redox behavior was characterized from DMSO solutions of these highly conjugated macromolecular systems and their potential as semiconductors was described. As a result, new semiconducting polymeric submicron particles were synthetized using a very fast, easy, highly robust, and green-solvent process. These results show a new example of the great potential of the polymerization assisted by MWR associated with the HCN-derived polymers, which has a dual interest both in chemical evolution and as functional materials.

4.
Polymers (Basel) ; 14(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35012081

RESUMEN

A systematic study is presented to explore the NH4CN polymerization induced by microwave (MW) radiation, keeping in mind the recent growing interest in these polymers in material science. Thus, a first approach through two series, varying the reaction times and the temperatures between 130 and 205 °C, was conducted. As a relevant outcome, using particular reaction conditions, polymer conversions similar to those obtained by means of conventional thermal methods were achieved, with the advantage of a very significant reduction of the reaction times. The structural properties of the end products were evaluated using compositional data, spectroscopic measurements, simultaneous thermal analysis (STA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). As a result, based on the principal component analysis (PCA) from the main experimental results collected, practically only the crystallographic features and the morphologies in the nanoscale were affected by the MW-driven polymerization conditions with respect to those obtained by classical syntheses. Therefore, MW radiation allows us to tune the morphology, size and shape of the particles from the bidimensional C=N networks which are characteristic of the NH4CN polymers by an easy, fast, low-cost and green-solvent production. These new insights make these macromolecular systems attractive for exploration in current soft-matter science.

5.
Sci Rep ; 10(1): 22350, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339853

RESUMEN

In this paper, the first study on NH4CN polymerization induced by microwave radiation is described, where a singular kinetic behaviour, especially when this reaction is conducted in the absence of air, is found. As a result, a complex conjugated N-heterocyclic polymer system is obtained, whose properties are very different, and even improved according to morphological features, characterized by their X-ray diffraction patterns and scanning electron microscopy analysis, with respect to those produced under conventional thermal treatment. In addition, a wide variety of relevant bioorganics have been identified, such as amino acids, nucleobases, co-factors, etc., from the synthetized NH4CN polymers. These particular families of polymers are of high interest in the fields of astrobiology and prebiotic chemistry and, more recently, in the development of smart multifunctional materials. From an astrobiological perspective, microwave-driven syntheses may simulate hydrothermal environments, which are considered ideal niches for increasing organic molecular complexity, and eventually as scenarios for an origin of life. From an industrial point of view and for potential applications, a microwave irradiation process leads to a notable decrease in the reaction times, and tune the properties of these new series macromolecular systems. The characteristics found for these materials encourage the development of further systematic research on this alternative HCN polymerization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...